Numerical Prediction of Hydrodynamic Loading on Circular Cylinder Array in Oscillatory Flow Using Direct-Forcing Immersed Boundary Method

نویسندگان

  • Ming-Jyh Chern
  • Wei-Cheng Hsu
  • Tzyy-Leng Horng
چکیده

Cylindrical structures are commonly used in offshore engineering, for example, a tensionleg platform TLP . Prediction of hydrodynamic loadings on those cylindrical structures is one of important issues in design of those marine structures. This study aims to provide a numerical model to simulate fluid-structure interaction around the cylindrical structures and to estimate those loadings using the direct-forcing immersed boundary method. Oscillatory flows are considered to simulate the flow caused by progressive waves in shallow water. Virtual forces due to the existence of those cylindrical structures are distributed in the fluid domain in the established immersed boundary model. As a results, influence of the marine structure on the fluid flow is included in the model. Furthermore, hydrodynamic loadings exerted on the marine structure are determined by the integral of virtual forces according to Newton’s third law. A square array of four cylinders is considered as the marine structure in this study. Time histories of inline and lift coefficients are provided in the numerical study. The proposed approach can be useful for scientists and engineers who would like to understand the interaction of the oscillatory flow with the cylinder array or to estimate hydrodynamic loading on the array of cylinders.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Fast Immersed Boundary Fourier Pseudo-spectral Method for Simulation of the Incompressible Flows

Abstract   The present paper is devoted to implementation of the immersed boundary technique into the Fourier pseudo-spectral solution of the vorticity-velocity formulation of the two-dimensional incompressible Navier-Stokes equations. The immersed boundary conditions are implemented via direct modification of the convection and diffusion terms, and therefore, in contrast to some other similar ...

متن کامل

Study on Flow of Power-law Fluid through an Infinite Array of Circular Cylinders with Immersed Boundary-lattice Boltzmann Method

A direct forcing method for the simulation of particulate flows based on immersed boundary-lattice Boltzmann method is used to study the flow of powerlaw fluid through an infinite array of circular cylinders with cylinder separations of 20a (a is the cylinder radius) with laminar shedding behind cylinders. Time averaged drag coefficient, maximum of lift coefficient and Strouhal number are given...

متن کامل

Non-Newtonian unconfined flow and heat transfer over a heated cylinder using the direct-forcing immersed boundary-thermal lattice Boltzmann method.

In this study, the immersed boundary-thermal lattice Boltzmann method has been used to simulate non-Newtonian fluid flow over a heated circular cylinder. The direct-forcing algorithm has been employed to couple the off-lattice obstacles and on-lattice fluid nodes. To investigate the effect of boundary sharpness, two different diffuse interface schemes are considered to interpolate the velocity ...

متن کامل

Discrete Forcing Immersed Boundary Method Using Virtual Interpolation Points

As a method to solve flow problems on complicated domains, an immersed boundary (IB) method equipped with the discrete forcing based on the fluid-structure interaction (FSI) is proposed in which the virtual interpolation points are introduced. The discrete force to the background fluid due to the no-slip condition on the surface of a fixed rigid boundary is the instantaneous amount of momentum ...

متن کامل

A novel immersed boundary velocity correction-lattice Boltzmann method and its application to simulate flow past a circular cylinder

A novel immersed boundary velocity correction–lattice Boltzmann method is presented and validated in this work by its application to simulate the two-dimensional flow over a circular cylinder. The present approach is inspired from the conventional immersed boundary method (IBM). In the conventional IBM, the effect of rigid body on the surrounding flow is modeled through a forcing term, which is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Applied Mathematics

دوره 2012  شماره 

صفحات  -

تاریخ انتشار 2012